Digital Image Processing
Chapter 4:
Image Enhancement in the
Frequency Domain



Background: Fourier Series

\ Fourier series:

Any periodic signals can be
viewed as weighted sum

A A AAANN, of sinusoidal signals with
AAAANADANANN different frequencies
JAVAVAVAVAVAN /

2 a Frequency Domain:

view frequency as an
Independent variable

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Im rocessing, 2" Edition.



Fourier Tr. and Frequency Domain

Time, spatial Frequency
Domain Domain
Signals

1-D, Continuous case

Fourier Tr.: F(u) = j f (x)e #™*dx

—0o0

Inv. Fourier Tr..  T(X) = IF(U)ejZ”“Xdu



Fourier Tr. and Frequency Domain (cont.)

1-D, Discrete case

_ 1 M -1 _ )
Fourier Tr.: F(u) = 3 fOJe ™™™ _o . ma
M -1 |
Inv. Fourier Tr.. ~ f(x) =) F(u)e’*" Xx=0,...,.M-1
u=0

F(u) can be written as

ll\

=R@U)+ jl(u) or F(u)=[F(u)e’

u

N
—

—
I—

where

F(u)|=yRU)?+1(u)?  ¢u)= tanl(ﬂj




Example of 1-D Fourier Transforms

flx) \F(u)|

Y AK F

M

A K points

I M points o— I M points el

F(u)| Notice that the longer
24K _ ¥ the time domain signal,
The shorter its Fourier

) transform

4
A 2K points

| M points — | M points R

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Relation Between Ax and Au

For a signal f(x) with M points, let spatial resolution AX be space
between samples in f(x) and let frequency resolution AU be space
between frequencies components in F(u), we have

1

AU =—
MAX

Example: for a signal f(x) with sampling period 0.5 sec, 100 point,
we will get frequency resolution equal to

B 1
100x0.5

AU =0.02 Hz

This means that in F(u) we can distinguish 2 frequencies that are
apart by 0.02 Hertz or more.



2-Dimensional Discrete Fourier Transform

For an image of size MxN pixels

2-D DFT
1 Mz:lNzi j2z(ux/M+vy/N)
F(u,v)=—— f(x,y)e "
MN 5553
= frequency in x direction,u=0,..., M-1
:frequency Iny direction,v=0,..., N-1
2-D IDFT
MZ:JLNZf j272(ux/M+vy/N)
f(X, y): F(U,V)ej (ux/ M +vy
H=0v=0 x=0,..., M-1
y=0,...,N-1



2-Dimensional Discrete Fourier Transform (cont.)

F(u,v) can be written as
F(u,v) = R(u,v)+ jl(u,v) or F(u,v)=|F(u,v)e "

where

F(u,v)| = \/R(u,v)z +1(u,v)>  #u,v) = tanl(

I(u,v)]
R(u,v)

For the purpose of viewing, we usually display only the
Magnitude part of F(u,v)



2-D DFT Properties

TABLE 4.1
: I Property Expression(s
Summary of some gk b )
important _ ‘ [ (e 3o/ N
i ) 5 e ; — AS s F2m (xS Moy SN
properties of the Fourier transform  F(u, v) MN 2 ;]f(xk ye
2-D Fourier _ '
transform. [nverse Fourier ey — MEI NEI F (11, 1) e/ wx/M -+ vy/N)
transform f(xy) = = = (. v)e
Polar F(u. v) = |F(u, v)|e )
representation
Spectrum IF(u.v)| = [R¥(u.v) + I*(u.v)]"?. R = Real(F)and
I = Imag(F)
Pl 1 r [ L) ]
1ase angle d(u, v) = tan
e (. v) { R{u.v) |
Power spectrum  P(u, v) = |F(u, v)[
. ] M-1 N-1
Average value fle.y) =F0.0) =—=> > f(x.y)
MN = =0
Translation fx. y)e s/ Movy/N) o By — g v — )

flx = xpy = ) & F(u, v)e 2rus/aoy)
When xy = uy = M/2and y, = v, = N/2.then
fle.y)(=1)""Y <= Flu— M/2.v — N/2)

flx = M/2,y — N/2) & Fluv)(-1)"""

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



2-D DFT Properties (cont.)

Conjugate
symmeltry

Differentiation

Laplacian

Distributivity

Scaling

Rotation

Periodicity

Separability

|F(u.v)| = [F(—u.—v)|
Lf”” = (ju)"F(u, v)

Flu,v) = F*(—u.—v)

d"Flu, v)

Vif(x. y) = —(u* + v*)F(u, v)

A y) + Al y)] = S[A )] + S[Ax )]
A y) - Bl y)] = 3LAGG )] - ] fa(x )]

af(x, v) = aF(u.v). flax, by) < ﬁf?[um‘ v/b)

(—jx)"f(x.y) =

¢

iy

&t

X = rcos# y = rsin# i = wCose V= wsIng
f(flf‘-‘ + H[]) — F(ftﬂ.{;ﬂ —+ H[])

Fluv) = Flu+ M.v) = Flu.v+ N) = Flu + M.v + N)
flax,y) =flx + M, y)=flx.y + N)=f(x + M,y + N)

See Egs. (4.6-14) and (4.6-15). Separability implies that we can
compute the 2-1 transform of an image by first computing 1-1)
transforms along each row of the image, and then computing a
I-D transform along each column of this intermediate result.
The reverse. columns and then rows, yields the same result.

TABLE 4.1

(continued)

nzalez and Richard E.

(Images from Rafael C. Go

Wood, Digital Tmage Processing, 2" Edition.



2-D DFT Properties (cont.)

Property Expmssiun{s]
Y a1 M-1N
mp ) , ,
( ¢ ElTl[' ];]1::1“{1 [1‘.} ]' £ [:..-.E.. v) = E E F-Jﬂ u -L\ .-r:‘T[,I’l'.II.I'-H u I'_'I'.l'."'lr':I
of the inverse MN —
Fourier

) _ This equation m{l]catas that inputting the function F*(tq,aie 4
transform using — jpig an algorithm designed to compute the forward trar (continued)

a forward (right side of the preceding equation) vields f*(x, y)/MN.
transtorm Taking the complex conjugate and multiplying this result by
algorithm MN gives the desired inverse.
_ | M-
Convolution’ flx,v)=h{x,y) = ﬁ Z E,,:f(m n)h(x —m.y — n)
_ | M1 l
Correlation’ flx.y)eh(x.y) = MN E, Ef (m.n)h(x + m.y + n)
0 n=0
Convolution flx.,y)=h(x,y) = Flu.v)H(u v):
theorem’ flx, vih(x, v) = Flu,v)+ Hlu, v)
Correlation flx,y)oh(x,y) = F*(u, v)H(u, v);
theorem’ fH(x y)h(x, P]I < Flu,v) = H(u, v)

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



2-D DFT Properties (cont.)

Some useful FT pairs:

e J(ma+vh)

Impuilse alx,y) = 1
(Faussian AN Igoe T o ge )2
sin(wrta) sin(7vb)
Rectangle rect|a. b] <= ab
(mua) (rvb)

Cosine L‘L‘JS[ZﬁH[]x + ET'L‘[]_}’) =

1

7
Sine sin(27ugx + 2wogy) =

=8t + wg.v + vy) + 8w — wyo v — vy)]

j% [(u + wge v + ) — 8w — wy. v — vy)]

TABLE 4.1

(continued)

" Assumes that functions have been extended by zero padding.

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Computational Advantage of FFT Compared to DFT

240 ——————— FIGURE 4.42
Computational
advantage of the

1800 | _FF'[' over a d_{rect
implementation
of the 1-D DFT.
Note that the

C(n) 1200 - advantage
increases rapidly
as a function of n.
600 -
0

1 2 3 4 5 6 7 8 9 1011 12 13 14 15

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Relation Between Spatial and Frequenc

AU 1

where

y Resolutions

- MAX NAy

Ax = spatial resolution in x direction
Ay = spatial resolution in y direction

( Ax and Ay are pixel width and
Au = frequency resolution in x ¢

neight. )
Irection

Av = frequency resolution iny @
N,M = image width and height

Irection



How to Perform 2-D DFT by Using 1-D DFT

=)

1-D

DFT
f(x,y) by row F(u.y)

=1 1-DDFT
l by column

~(U,v)



How to Perform 2-D DFT by Using 1-D DFT (cont.)

Alternative method

F(x,v) by row F(u,v)



Periodicity of 1-D DFT

From DFT: F(U) — ﬁ Mi f (X)e—jZﬂule
Xx=0

sttt et L, ot

-IN 0 N ZIN

\

We display only in this range

DFT repeats itself every N points (Period = N) but we usually
display itforn=0,..., N-1



Conventional Display for 1-D DFT

(%)

It

0 s N-1 0

Time Domain Signal

High frequency
area

Low frequency
area

The graph F(u) Is not
easy to understand !



Conventional Display for DFT : FFT Shift

F(u)

Q High frequency area
Q Low frequency area

FFT Shift: Shift center of the
graph F(u) to O to get better
Display which is easier to
understand.

Fu)

Iis

W /2-1



Periodicity of 2-D DFT

2-D DFT: F(u,v) =

For an image of size NxM
pixels, its 2-D DFT repeats
0 itself every N points in x-
direction and every M points
In y-direction.

We display only
In this range

= N O N 2 N (Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Conventional Display for 2-D DFT

F(u,v) has low frequency areas

at corners of the image while high
frequency areas are at the center

of the image which is inconvenient

to interpret.

High frequency area

Q Low frequency area

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



2-D FFT Shift : Better Display of 2-D DFT

2-D FFT Shift is a MATLAB function: Shift the zero frequency
of F(u,v) to the center of an image.

|[F(u) |F{u)
] P ’
HI. ||!' I"L |Ir
i { i H
I 1.1-"'1"\.!"_"-.-" ‘1.-""‘-!""\«; } I\iil"‘.h‘w ‘--"-..r"l"-r'-“ﬂ_rrr.“‘krr r—
0 M2 M- 1

p————ne period ———w]

(Images from Rafael C. Gonzalez and Richard E. H |gh frequency area O LOW frequency area

Wood, Digital Image Processing, 2" Edition.



2-D FFT Shift (cont.) : How it works

Original display
of 2D DFT

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Example of 2-D DFT

S h

FIGURE 4.3

(a) Image of a
200 > 40 white
rectangle on a
black background
of size 512 x 512
pixels.

(b) Centered
Fourier spectrum
shown after
application

of the log
transformation
given in

Eq. (3.2-2).
Compare with
Fig. 4.2.

|

i

Notice that the longer the time domain signal,
The shorter its Fourier transform

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Example of 2-D DFT

a
b

FIGURE 4.4

(a) SEM image of
a damaged
integrated circuit.
(b) Fourier
spectrum of (a).
(Original image
courtesy of Dr. J.
M. Hudak,
Brockhouse
[nstitute for
Materials
Research,
McMaster
University.,
Hamilton,
Ontario, Canada.)

Notice that direction of an
object in spatial image and
Its Fourier transform are
orthogonal to each other.

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Example of 2-D DFT

2D DFT

Original image

2D FFT Shift




Example of 2-D DFT

2D DFT

Original image

2D FFT Shift




Basic Concept of Filtering in the Frequency Domain

From Fourier Transform Property:

g(x,y) = 1(xy)*h(x,y) & F(u,v)-H(u,v) =G(u,v)

We cam perform filtering process by using

Frequency domain filtering operation

Filter

function
H . v)

Inverse
Fourier
transform

:E}‘ Fourier
transform

Flu, v) Hu, v)F(u,v)

Pre-
processing

Post-
processing
Multiplication in the frequency domain
IS easier than convolution in the spatial

Domain.
flx.y) a(x.v)
[nput Enhanced
image image

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Filtering in the Frequency Domain with FFT shift

In this case, F(u,v) and H(u,v) must have the same size and
have the zero frequency at the center.



Multiplication in Freq. Domain = Circular Convolution

f(x) =DFT — F(u) \

G(u) = F(u)H(u) — IDFT — g(x)

h(x) =DFT — H(u) ~~

Multiplication of
DFTs of 2 signals
IS equivalent to
perform circular

convolution
In the spatial domain.

“Wrap around” effect 20 40 60 80 100 120




Multiplication in Freq. Domain = Circular Convolution

Original H(u,v)

Image Gaussian
Lowpass
Filter with
D0 =5

Filtered image

(obtained using
circular convolution)

—— Incorrect areas at image rims




Linear Convolution by using Circular Convolution and Zero Padding

f(x) — Zero padding —DFT — F(u) N
G(u) = F(u)H(u)

h(x) — Zero padding —DFT — H(u) 7~ |

IDFT
Concatenation

0 50 100 150 200 2 1

: g(x)
0.5- -
0- D |, Padding zeros
0 50 100 150 200 250 Before DFT

Keep only this part




Linear Convolution by using Circular Convolution and Zero Padding

[——B— B

Correct

i Incorrect KD
One of the two
p original images
I
] A
+
-
L Zero padding
Missing,
_r

B+D-1— » 0 .
Result of filtering in the frequency domain without Properly extended (padded) image
properly padding the input images

1

P Correct

P
— ¢
|L~ 0 :

Result of filtering in the frequency domain with
properly padded input images.

A+C -1
B+D-1

|_-

ah

C
FIGURE 4.38
[ustration of the
need for function
padding.
(a) Result of
performing 2-D
convolution
without padding.
(b) Proper
function padding.
(c) Correct
convolution
result.

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Linear Convolution by using Circular Convolution and Zero Padding

TITTY Y ¢

Filtered image

Zero padding area in the spatial
Domain of the mask image Only this area is kept.
(the ideal lowpass filter)

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Filtering in the Frequency Domain : Example

In this example, we set F(0,0) to zero
which means that the zero frequency
component is removed.

Note: Zero frequency = average
Intensity of an image

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Filtering in the Frequency Domain : Example

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.

ab
cd

FIGURE 4.7 (a) A two-dimensional lowpass filter function. (b) Result of lowpass filtering the image in Fig. 4.4{a).
(c) A two-dimensional highpass filter function. {d) Result of highpass filtering the image in Fig. 4.4{a).



Filtering in the Frequency Domain : Example (cont.)

FIGURE 4.8

Result of highpass
filtering the image
in Fig. 4.4{(a) with
the filter in

Fig. 4.7(c),
modified by
adding a constant
of one-half the
filter height to the
filter function.
Compare with
Fig. 4.4(a).

Result of Sharpening Filter

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Filter Masks and Their Fourier Transforms

H(u) H (i) ab
f 4 c d
FIGURE 4.9
(a) Giaussian
frequency domain
lowpass filter.
(b) Gaussian
frequency domain
highpass filter.
(¢) Corresponding
lowpass spatial
filter.
= [f Ll [

(d) Corresponding
highpass spatial
filter. The masks

h(x) h( x) shown are used in
i i Chapter 3 for
lowpass and
| I highpass filtering.
I =18 [-1
I —1|-1|-1
211 o=110
42 —1] 4 [-1
211 o-=110
- -

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



1 D(u,v) <D,
0 D(u,v) > D,

where D(u,v) = Distance from (u,v) to the center of the mask.

Hu. v H (. v)
T F |
| |
= I I = =
D[]
(Images from Rafael C. Gonzalez and Richard E.
abc Wood, Digital Image Processing, 2" Edition.

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displaved as an
image. (¢) Filter radial cross section.



Examples of Ideal Lowpass Filters

daaaaaaa

(Images from Rafael C. Gonzalez and Richard E.
b2 ]_"'I Wood, Digital Image Processing, 2" Edition.

FIGURE 4.11 (a) An image of size 500 x 500 pixels and (b) its Fourier spectrum. The
superimposed circles have radil values of 5, 15, 30, 80, and 230, which enclose Y2.0,
U4.6,96.4, 98.0, and 99.5% of the image power, respectively.

The smaller D,, the more high frequency components are removed.
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Results of Ideal Lowpass Filters

Ringing effect can be
obviously seen!
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How ringing effect happens (cont.)

Surface Plot

Spatial Response of Ideal \\
Lowpass Filter with D, = 5 = .

A
Ul

< SN ~
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o~ ALSENSNSSSSS i N1 N 204,203
et AN . N NS e s
0« Sy N7 """'?‘:‘*‘\%ss::z:'«;zo.. A
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How ringing effect happens (cont.)

) P

W v

M

alb W U U o

cd

FIGURE 4.13 {a) A frequency-domain ILPF of radius 5. {b) Corresponding spatial
filter (note the ringing). (¢} Five impulses in the spatial domain, simulating the values

of five pixels. (d) Convolution of (b) and (c} in the spatial domain. (Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.




Butterworth Lowpass Filter

Transfer function

1

Hluv) =17 [D(u,v)/D, "

Where D, = Cut off frequency, N = filter order.

Hu.v) Hu, v)

i
=D, v)
Dy
(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.
abc

FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross sections of orders 1 through 4.



Results of Butterworth Lowpass Filters

.Qféf o
T

daaaaaaa

wd
NI

-
T

saaaaaad

---umEl
Y a

-\- --.l- 14

T

ab
cd with cutoff frequancie
I

Compare with Fig. 4.1 2.

.Qféf o
T

aaaaﬂaaa aaaaaaaa
-IGlII!E 4.15 (a) Ori g ( ) (] of filtering with BLPFs of order 2,
T L 8[] anni 250, as shown in Fig. 4.11(b).

There is less ringing
effect compared to
those of ideal lowpass

filters!

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Spatial Masks of the Butterworth Lowpass Filters

4 bieid
FIGURE 4.16 (a)-(d) Spatial representation of BLPFs of order 1, A 5. and 20, and

profiles through the center of the filters (all filters have a cutoff frequency of 3).
as a function of filter order.

Orresponding gray-level
ote that ringing increases

Some ripples can be seen.

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Gaussian Lowpass Filter

Transfer function
H (u V) _ e—Dz(u,v)/2D02

Where D, = spread factor.

Hu, v) Hu,v)

0.667

.........

e .
fa S o

= D(u.v)

(Images from Rafael C. Gonzalez and Richard E.

Wood, Digital Image Processing, 2" Edition.

abc

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b} Filter displayed as an image. (¢) Filter

radial cross sections for various values of D,,.

Note: the Gaussian filter is the only filter that has no ripple and

hence no ringing effect.



Gaussian Lowpass Filter (cont.)

- 2 2
. | |(|| V) e D (u,v)/2D,
~ | _ - S ~ o
I -7 < ~ T~
| _ - ~ S~ BN
L= _ - RS T~
| - > S
. ~- | - ~ ~ N
| _ - / ~ . ~ . -
[ ~ o RS ~
-7 - S ~ o
06--"" -7 ~. -
| -7 S~ S
| - . ~ - -
| - -7 S N ~ —
-7 - RN ~ o —
04 -- | - . -
| _ - ~ o RN
| - > N
| - - — ~ ~
[ = <
2 ~ -7 S re ~ .
02| .
! P ~<
| e e = S S~
= ===
e /Il TN
B e e ) /l[ \ {«\\\‘c‘g::x::::’::::::'z‘::::o:‘:‘
’o“""‘o‘o“‘!"o"‘!“o%’Z"“o'¢""o"llll/l \\\\\:“:."‘!".0“:‘%“%‘ oo
S e ) R e e N
=== NN e e e
IS eeseae 0., “\ NS e e
S U N Y, ¢! “ USRS
= T e U X X X XIS e s
20 e ISR e s
S R IER RIS SRS S TR I S
= = e
= = = S S
B e O e S
SR e e S S e s e s> 20
= = = = ==

S -~
s s 0 - ~
= - ~
RSESSES SIS eSS — ~
e — - ~
ZSESSSINISISE - N
- 1TSS - ~
= 20 - N

Spatial respones of the o2
Gaussian lowpass filter ‘I‘o.mv/

== So=gas = 2>
o<S = e e
0 e ——a—— o e e
S S S e e e S e R oSS R s>
=== S e S ST S S S SO SO S oS SOt Oos SS Sos S R T S eSS ST S oS SOSS S8 SC SO SaS S
S S e e e S s =
S e o el /) R e 2>
e = S==== ST e
e o T S S S S S e S S S S S SOS T ST ST Sees s S =
e e
e e e
S D S eSS S S S TS S SIS S S oSO S SO S S
e e e
=

=== S =

e e

S S e S
S e e e
D S S S S S S S S S S S S S OS2 S SIS IS SISO IS OSSO

ST e

S e

=
= o
S S ST oSS S OSSO
e =
==

SR e e e e 0
===

Gaussian shape



Results of Gaussian Lowpass Filters
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FIGURE 4.18 {a) Original image. (b)—(f) Results of filtering with Gaussian lowpass  a b
filters with cutofl frequencies sel at radii values of 5, 15, 30, 80, and 230, as shown in - ¢ d
Fg 4.11({b). Compare with Figs. 4.12 and 4.15. et

No ringing effect!

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Application of Gaussian Lowpass Filters

S

FIGURE 4.19

(a) Sample text of
poor resolution
(note broken
characters in
magnified view).
(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).

Historicaliy, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yEar

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1200 rather than the ygar

e &

Original image

—{ea

Better Looking

The GLPF can be used to remove jagged edges
and “repair” broken characters.

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Application of Gaussian Lowpass Filters (cont.)

Remove wrinkies

Original image

— Softer-Looking

FIGURE 4.20 (a) Original image (1028 x 732 pixels). (b) Result of filtering with a GLPF with D, = 100.

(c) Result of filtering with a GLPF with Dy = 80. Note reduction in skin fine lines in the magnified sections

of (b) and (c¢).
(Images-from-Rafael C.-Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Application of Gaussian Lowpass Filters (cont.)

Original image : The gulf of Mexico and Filtered image
Florida from NOAA satellite.

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.

Remove artifact lines: this is a simple but crude way to do it!
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(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.

FIGURE 4.22 Top row: Perspective plot, image representation. and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



D(u,v) <D,
D(u,v) > D,

where D(u,v) = Distance from (u,v) to the center of the mask.

Hiw, v)

Hin, v)
4

L

= Diu,v)

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Butterworth Highpass Filters

Transfer function

1

)= o Dy

Where D, = Cut off frequency, N = filter order.

Hiu, v)
' 1
1.0

- Diu, v)

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Gaussian Highpass Filters

Transfer function
H (u V) —1_ e—DZ(u,v)/2D02

Where D, = spread factor.
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(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Gaussian Highpass Filters (cont.)
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Spatial Responses of Highpass Filters

abc

FIGURE 4.23 Spatial representations of typical {a) ideal, {(b) Butterworth, and (c¢) Gaussian frequency

ymain highpass filters, and corresponding gray-level profiles. .
domain highpass hlters, and corresponding gray-level proliles (Images from Rafael C. Gonzalez and Richard E.

Wood, Digital Image Processing, 2" Edition.



Results of Ideal Highpass Filters

- p
a @ 9

: a = |
H. U. o O e { - W
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FIGURE 4.24 Results of ideal highpass filtering the image in Fig\ 4.11(a) with Dy = 15, 30, and 80,
respectively. Problems with ringing are quite evident in (a) and (b).

Ringing effect can be
obviously seen!

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Results of Butterworth Highpass Filters

a 5y ! I..'_

) L L ‘:‘I {-_-
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FIGURE 4.25 Results of highpass filtering the image in Fig. 4.11(a) using a BHPF of order 2 with D, = 15,
30, and 80, respectively. These results are much smoother than those obtained with an ILPF,

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Results of Gaussian Highpass Filters

e

FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with Dy = 15,
30, and 80, respectively. Compare with Figs. 4.24 and 4.25.

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Laplacian Filter in the Frequency Domain
From Fourier Tr. Property:

N

d"f(x)

< (ju)' F(u
e d VORSC)
Then for Laplacian operator
2 2
vef =9 Z O ]; = (U +V2F(u,v)
ox: oy

We get

Image of

Surface plot

Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Laplacian Filter in the Frequency Domain (cont.)

Spatial response of —(u2+v?) Cross section

| i

-4 {1

| i

Laplacian mask in Chapter 3



Sharpening Filtering in the Frequency Domain
Spatial Domain

fop (X, ¥) = T(X, ¥) = T, (X, y)
fop (X, Y) = AT (X, y) = T,(X, Y)
fp (X, Y) = (A= T(X,y)+ T (X, y) - T,(X,y)
fp (X, ¥) = (A=D T (X, y) + T, (X, y)
Frequency Domain Filter
Hp,(u,v)=1-H (u,v)

Hip(U,v) =(A-1)+H, (u,v)

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Sharpening Filtering in the Frequency Domain (cont.)

P-V*P

ages from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Sharpening Filtering in the Frequency Domain (cont.)
f.(XyY)=(A-Df(x,y)+f

= onzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



High Frequency Emphasis Filtering

th (uvy=a+bH. (uv
e\F ¥ ) hp\~1 V)

(Images from Rafael ~Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Homomorphic Filtering
An Iimage can be expressed as

F(x,y) =1(x, y)r(x,y)

1(X,y) = illumination component
r(x,y) = reflectance component

We need to suppress effect of illumination that cause image
Intensity changed slowly.

FIGURE 4.31
_ Homomorphic
- " 1 l H
fle.y) &= In [Z> DFT H{u,v) (DFT) exp g(x. ) filtering approach
for image

enhancement.




Homomorphic Filtering

FIGURE 4.31
Homomorphic
filtering approach
for image
enhancement.

Hu. v) FIGURE 4.32
4 Cross section of a
circularly

svmmetric filter
function. D{u, v)
vl — is the distance
from the origin of
the centered
transform.

YL

P
| i

D, v)

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Homomorphic Filtering

ab

FIGURE 4.33

(a) Original
image. (b) Image
processed by
homomorphic
filtering (note
details inside
shelter).
(Stockham.)

More details in the room can be seen!

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



Correlation Application: Object Detection

FIGURE 4.41

(a) Image.

(b Template.

() and

{dy Padded
images.

ey Correlation
function displayed
as an image.

(1) Horizmon tal
profile line
through the
highest value in
(). showing the
point at which the
best match took
place.

Highest correlation
value

Gray-level
profile line

(Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.



