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Background: Fourier Series Background: Fourier Series 

Fourier series:

Any periodic signals can be
viewed as weighted sum
of sinusoidal signals with 
different frequencies

F D iFrequency Domain: 
view frequency as an 
i d d t i blindependent variable

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Fourier Tr. and Frequency Domain Fourier Tr. and Frequency Domain 

Ti ti l F
Fourier Tr.

Time, spatial 
Domain 
Signals

Frequency 
Domain 
SignalsInv Fourier TrSignals SignalsInv Fourier Tr.

1-D, Continuous case
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Fourier Tr. and Frequency Domain (cont.) Fourier Tr. and Frequency Domain (cont.) 
1 D Discrete case1-D, Discrete case
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Example of Example of 11--D Fourier Transforms D Fourier Transforms 

Notice that the longerNotice that the longer
the time domain signal,
The shorter its Fourier
transform

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Relation Between Relation Between x and x and u u 
F i l f( ) ith M i t l t ti l l ti x bFor a signal f(x) with M points, let spatial resolution x be space 
between samples in f(x) and let frequency resolution u be space 
between frequencies components in F(u) we havebetween frequencies components in F(u), we have

u 
1

xM
u




E l f i l f( ) i h li i d 0 5 100 iExample: for a signal f(x) with sampling period 0.5 sec, 100 point, 
we will get frequency resolution equal to

  Hz02.0
5.0100

1



u

5.0100

This means that in F(u) we can distinguish 2 frequencies that are ( ) g q
apart by 0.02 Hertz or more.



22--Dimensional Discrete Fourier TransformDimensional Discrete Fourier Transform

2 D DFT

For an image of size MxN pixels
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2-D DFT


 0 0x yMN

u = frequency in x direction, u = 0 ,…, M-1
v = frequency in y direction, v = 0 ,…, N-1

2-D IDFT
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22--Dimensional Discrete Fourier Transform (cont.)Dimensional Discrete Fourier Transform (cont.)

F(u,v) can be written as
)()()( vujFF )()()( jIRF ),(),(),( vujevuFvuF or),(),(),( vujIvuRvuF 

where
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For the purpose of viewing, we usually display only the
Magnitude part of F(u,v)ag ude pa o (u,v)



22--D DFT PropertiesD DFT Properties

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



22--D DFT Properties (cont.)D DFT Properties (cont.)

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



22--D DFT Properties (cont.)D DFT Properties (cont.)

(Images from Rafael C. Gonzalez and Richard E. 
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22--D DFT Properties (cont.)D DFT Properties (cont.)

(Images from Rafael C. Gonzalez and Richard E. 
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Computational Advantage of FFT Compared to DFTComputational Advantage of FFT Compared to DFT

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Relation Between Spatial and Frequency ResolutionsRelation Between Spatial and Frequency Resolutions
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wherewhere
x = spatial resolution in x direction
y = spatial resolution in y directiony = spatial resolution in y direction

x and y are pixel width and height. )
u = frequency resolution in x direction
v = frequency resolution in y direction

 y p g )

v = frequency resolution in y direction
N,M = image width and height



How to Perform How to Perform 22--D DFT by Using D DFT by Using 11--D DFTD DFT

1-D 
DFT

f(x,y)
DFT

by row F(u,y)

1 D DFT1-D DFT
by column

F(u,v)



How to Perform How to Perform 22--D DFT by Using D DFT by Using 11--D DFT (cont.)D DFT (cont.)

Alternative method

f(x,y)
1 D DFT1-D DFT

by column

1-D 
DFT

by rowF(x,v) F(u,v)



Periodicity of Periodicity of 11--D DFTD DFT
11 M
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2NN 0 N 2N-N

DFT repeats itself every N points (Period = N) but we usually

We display only in this range

DFT repeats itself every N points (Period  N) but we usually 
display it for n = 0 ,…, N-1



Conventional Display for Conventional Display for 11--D DFTD DFT

f(x)
)(uF

DFT
f( )

0 N-1

Time Domain Signal

0 N-1

g

L f

High frequency
area

Low frequency
area

The graph F(u) is notThe graph F(u) is not 
easy to understand !



Conventional Display for DFT : FFT ShiftConventional Display for DFT : FFT Shift

)(uF
FFT Shift: Shift center of the
graph F(u) to 0 to get bettergraph F(u) to 0 to get better
Display which is easier to 
understand.

)(uF0 N 1 )(uF0 N-1

High frequency area

0-N/2 N/2-1Low frequency area



Periodicity of Periodicity of 22--D DFTD DFT


 1 11 M N
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For an image of size NxM
pixels, its 2-D DFT repeats 
itself every N points in x-0 itself every N points in x-
direction and every M points 
in y-direction.

0

y

M

We display only 
2M in this range

0 N 2N-N

2M

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Conventional Display for Conventional Display for 22--D DFTD DFT

F(u,v) has low frequency areas
at corners of the image while highg g
frequency areas are at the center
of the image which is inconvenient
to interpret.

High frequency area

Low frequency area

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



22--D FFT Shift : Better Display of D FFT Shift : Better Display of 22--D DFTD DFT
2-D FFT Shift is a MATLAB function: Shift the zero frequency2 D FFT Shift is a MATLAB function:  Shift the zero frequency 
of F(u,v) to the center of an image.

2D FFTSHIFT

High frequency area Low frequency area(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



22--D FFT Shift (cont.) : How it worksD FFT Shift (cont.) : How it works

-M

0

Display of 2D DFT
Aft FFT Shift

M
After FFT Shift

Original display2M
of 2D DFT

0 N 2N-N

2M

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Example of Example of 22--D DFTD DFT

Notice that the longer the time domain signalNotice that the longer the time domain signal,
The shorter its Fourier transform

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Example of Example of 22--D DFTD DFT

Notice that direction of an 
object in spatial image andobject in spatial image and
Its Fourier transform are 
orthogonal to each other.

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Example of Example of 22--D DFTD DFT

2D DFT

Original image

2D FFT Shift



Example of Example of 22--D DFTD DFT

2D DFT

Original image

2D FFT Shift



Basic Concept of Filtering in the Frequency DomainBasic Concept of Filtering in the Frequency Domain
From Fourier Transform Property:From Fourier Transform Property:

),(),(),(),(),(),( vuGvuHvuFyxhyxfyxg 

We cam perform filtering process by using 

M ltiplication in the freq enc domainMultiplication in the frequency domain
is easier than convolution in the spatial
Domain.

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Filtering in the Frequency Domain with FFT shiftFiltering in the Frequency Domain with FFT shift

F(u,v) H(u,v)
(User defined) g(x,y)

FFT hifFFT shift 2D IFFTX

2D FFT FFT shift

f(x,y) G(u,v)f(x,y) G(u,v)

In this case, F(u,v) and H(u,v) must have the same size and
have the zero frequency at the center.



Multiplication in Freq. Domain = Circular ConvolutionMultiplication in Freq. Domain = Circular Convolution

f( ) DFT F( )f(x) DFT F(u)
G(u) = F(u)H(u) 

h(x) DFT H(u)
g(x)IDFT

1

h(x) DFT H(u)

Multiplication of 
DFT f 2 i l f( )

0 20 0 60 80 100 120
0

0.5DFTs of 2 signals
is equivalent to
perform circular

f(x)

0 20 40 60 80 100 120

0 5

1

perform circular 
convolution
in the spatial domain.

h( )

0 20 40 60 80 100 120
0

0.5 h(x)

“Wrap around” effect 0 20 40 60 80 100 120

40
g(x)

p

0 20 40 60 80 100 120
0

20
g(x)



Multiplication in Freq. Domain = Circular ConvolutionMultiplication in Freq. Domain = Circular Convolution

H(u,v)
Gaussian

Original 
image

Lowpass
Filter with 
D0 = 5

Filtered image 
(obtained using 
circular convolution)circular convolution)

Incorrect areas at image rims



Linear Convolution by using Circular Convolution and Zero Padding Linear Convolution by using Circular Convolution and Zero Padding 

f( ) DFT F( )Zero paddingf(x) DFT F(u)
G(u) = F(u)H(u) 

h(x) DFT H(u)Zero padding

Zero padding

h(x) DFT H(u)
IDFT

Zero padding

1

Concatenation
0

0.5

g(x)
0 50 100 150 200 250

1

0 50 100 150 200 250
0

0.5

Padding zeros
Before DFT0 50 100 150 200 250

40

Before DFT

Keep only this part

0 50 100 150 200 250
0

20
p y p



Linear Convolution by using Circular Convolution and Zero Padding Linear Convolution by using Circular Convolution and Zero Padding 

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Linear Convolution by using Circular Convolution and Zero Padding Linear Convolution by using Circular Convolution and Zero Padding 

Filtered image

Zero padding area in the spatial
Domain of the mask image
(th id l l filt )

Only this area is kept.

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.

(the ideal lowpass filter)



Filtering in the Frequency Domain : ExampleFiltering in the Frequency Domain : Example

hi l ( )In this example, we set F(0,0) to zero
which means that the zero frequency
component is removedcomponent is removed.

N t Z fNote: Zero frequency = average 
intensity of an image

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Filtering in the Frequency Domain : ExampleFiltering in the Frequency Domain : Example

Lowpass Filter

Highpass Filter

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Filtering in the Frequency Domain : Example (cont.)Filtering in the Frequency Domain : Example (cont.)

Result of Sharpening Filter

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Filter Masks and Their Fourier TransformsFilter Masks and Their Fourier Transforms

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Ideal Lowpass FilterIdeal Lowpass Filter
Ideal LPF Filter Transfer function
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Ideal LPF Filter Transfer function
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where D(u,v) = Distance from (u,v) to the center of the mask.( , ) ( , )

(Images from Rafael C. Gonzalez and Richard E. 
Wood Digital Image Processing 2nd EditionWood, Digital Image Processing, 2 Edition.



Examples of Ideal Lowpass FiltersExamples of Ideal Lowpass Filters

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.

The smaller D0, the more high frequency components are removed.



Results of Ideal Lowpass Filters Results of Ideal Lowpass Filters 

Ringing effect can be 
obviously seen!

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



How ringing effect happens How ringing effect happens 
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Surface Plot



1

Ideal Lowpass Filter
0.6

0.8

Ideal Lowpass Filter
with D0 = 5

0

0.2

0.4

20
0

20

-20

0

20

0

Abrupt change in the amplitude -20-20Abrupt change in the amplitude 



How ringing effect happens (cont.) How ringing effect happens (cont.) 

x 10
-3

Surface Plot

15

S i l R f Id l
5

10Spatial Response of Ideal 
Lowpass Filter with D0 = 5

20
20

0

-20
0

20

-20

0Ripples that cause ringing effect



How ringing effect happens (cont.) How ringing effect happens (cont.) 

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Butterworth Lowpass Filter Butterworth Lowpass Filter 
Transfer function

  NvuH 2/)(
1),( 

Transfer function

  NDvuD 2
0/),(1

),(


Where D0 = Cut off frequency N = filter orderWhere D0  Cut off frequency, N  filter order.

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Results of Butterworth Lowpass Filters Results of Butterworth Lowpass Filters 

There is less ringing 
effect compared toeffect compared to 
those of ideal lowpass
filters!filters!

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Spatial Masks of the Butterworth Lowpass Filters Spatial Masks of the Butterworth Lowpass Filters 

Some ripples can be seen.(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Gaussian Lowpass Filter Gaussian Lowpass Filter 
Transfer function

2
0

2 2/),(),( DvuDevuH 
Transfer function

Where D0 = spread factor.

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.

Note: the Gaussian filter is the only filter that has no ripple and 
hence no ringing effect.



Gaussian Lowpass Filter (cont.) Gaussian Lowpass Filter (cont.) 
22

0 8

1

2
0

2 2/),(),( DvuDevuH 

0.4

0.6

0.8

Gaussian lowpass 
filter with D0 = 5 

20

0.2

-20
0

20

-20

0

0.03

0 01

0.02

0.03

Spatial respones of the 
Gaussian lowpass filter

20
20

0

0.01Gaussian lowpass filter
with D0 = 5 

-20
0

20

-20

0

Gaussian shape



Results of Gaussian Lowpass Filters Results of Gaussian Lowpass Filters 

No ringing effect!

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Application of Gaussian Lowpass FiltersApplication of Gaussian Lowpass Filters

Better LookingOriginal image

Th GLPF b d t j d dThe GLPF can be used to remove jagged edges 
and “repair” broken characters.

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Application of Gaussian Lowpass Filters (cont.) Application of Gaussian Lowpass Filters (cont.) 

R i klRemove wrinkles

Original image

Softer-Looking

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Application of Gaussian Lowpass Filters (cont.) Application of Gaussian Lowpass Filters (cont.) 

Filtered imageOriginal image : The gulf of Mexico and Filtered imageOriginal image : The gulf of Mexico and
Florida from NOAA satellite. (Images from Rafael C. Gonzalez and Richard E. 

Wood, Digital Image Processing, 2nd Edition.

Remove artifact lines: this is a simple but crude way to do it!



Highpass Filters Highpass Filters 

Hhp = 1 - Hlp

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Ideal Highpass Filters Ideal Highpass Filters 
Ideal LPF Filter Transfer function
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Ideal LPF Filter Transfer function
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where D(u,v) = Distance from (u,v) to the center of the mask.( , ) ( , )

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Butterworth Highpass Filters Butterworth Highpass Filters 
Transfer function

  NvuH 2)(/
1),( 

Transfer function

  NvuDD 2
0 ),(/1

),(


Where D0 = Cut off frequency N = filter orderWhere D0  Cut off frequency, N  filter order.

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Gaussian Highpass Filters Gaussian Highpass Filters 
Transfer function

2
0

2 2/),(1),( DvuDevuH 
Transfer function

Where D0 = spread factor.

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Gaussian Highpass Filters (cont.) Gaussian Highpass Filters (cont.) 

2
0

2 2/),(1),( DvuDevuH 
0.8

1

0.4

0.6 Gaussian highpass 
filter with D0 = 5 

60
60
0

0.2

10
20

30
40

50
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20

40

2000

3000

0

1000Spatial respones of the 
Gaussian highpass filter

ith D 5
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20
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40
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20
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60with D0 = 5 



Spatial Responses of Highpass Filters Spatial Responses of Highpass Filters 

Ripplespp

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Results of Ideal Highpass Filters Results of Ideal Highpass Filters 

Ringing effect can be 
b i l !obviously seen!

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Results of Butterworth Highpass Filters Results of Butterworth Highpass Filters 

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Results of Gaussian Highpass Filters Results of Gaussian Highpass Filters 

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Laplacian Filter in the Frequency DomainLaplacian Filter in the Frequency Domain

)(fd nFrom Fourier Tr Property:
  )()( uFju
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xfd n
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From Fourier Tr. Property:

Th f L l i tThen for Laplacian operator

  ),(22
2

2

2

2
2 vuFvufff 








   )(22 yx
f



 222

We get
 222 vu 

Image ofg
–(u2+v2)

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.

Surface plot



Laplacian Filter in the Frequency Domain (cont.)Laplacian Filter in the Frequency Domain (cont.)

Spatial response of –(u2+v2) Cross section

Laplacian mask in Chapter 3



Sharpening Filtering in the Frequency DomainSharpening Filtering in the Frequency Domain
Spatial Domain

),(),(),( yxfyxfyxf lphp 

),(),(),( yxfyxAfyxf lphb 

)()()()1()( fffAf ),(),(),()1(),( yxfyxfyxfAyxf lphb 

),(),()1(),( yxfyxfAyxf hphb 

Frequency Domain Filter

),(),()1(),( yxfyxfAyxf hphb 

Frequency Domain Filter

),(1),( vuHvuH lphp 

),()1(),( vuHAvuH hphb 

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Sharpening Filtering in the Frequency Domain (cont.)Sharpening Filtering in the Frequency Domain (cont.)

p P2

P2 PP 2P2 PP 2

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Sharpening Filtering in the Frequency Domain (cont.)Sharpening Filtering in the Frequency Domain (cont.)
),(),()1(),( yxfyxfAyxf hphb  ),(),()(),( yfyfyf hphb

Pfhp
2f

A = 2 A = 2 7A = 2.7

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



High Frequency Emphasis FilteringHigh Frequency Emphasis Filtering
)()( vubHavuH hhf  ),(),( vubHavuH hphfe 

Original Butterworth
highpass g pass
filtered
image

High freq. emphasis Afterg q p
filtered image Hist

Eq.

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.

a = 0.5, b = 2



Homomorphic FilteringHomomorphic Filtering
An image can be expressed asg p

),(),(),( yxryxiyxf 

i(x,y) = illumination component
r(x,y) = reflectance component

We need to suppress effect of illumination that cause image 
Intensity changed slowlyIntensity changed slowly.  



Homomorphic FilteringHomomorphic Filtering

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Homomorphic FilteringHomomorphic Filtering

More details in the room can be seen!More details in the room can be seen!

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.



Correlation Application: Object DetectionCorrelation Application: Object Detection

(Images from Rafael C. Gonzalez and Richard E. 
Wood, Digital Image Processing, 2nd Edition.


